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Stability of bound states near the zero-dispersion wavelength in optical fibers
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The propagation of weakly nonlinear pulses near the zero-dispersion wave{ZBy) in optical fibers is
governed by a modified nonlinear Sctilnger (NLS) equation with a third-order-derivative dispersive term.
This equation is known to admit steady, multihump bound states that would require less peak power to launch
than an ordinary NLS soliton pulse of comparable duration and with carrier wavelength in the anomalous
dispersion regime. Here, the stability of the two-hump bound state for which third-order dispersion is most
significant is examined. Linear stability analysis indicates the presence of a mild instabilityO¢libr %)
growth rate. Numerical solutions of the modified NLS equation, however, reveal that, under certain conditions,
nonlinearity has a stabilizing effect, permitting two-hump pulses to propagate for long distances without
collapsing. Depending on the type of perturbation, a perturbed bound state evolves to a neighboring state with
carrier frequency shifted either towards or away from the ZDW. The evolution of more general pulse profiles
near the ZDW is also considered and the effect of fiber loss is discUsEd63-651X97)00810-9

PACS numbdrs): 42.81.Dp

I. INTRODUCTION It is interesting, on the other hand, that there exists an
infinity of solitary-wave solution families of the MNLS

The propagation of weakly nonlinear pulses in single-equation featuring more than one hump. These solutions are
mode optical fibers is governed in general by the nonlineapossible in the anomalous dispersiogiree at discrete val-
Schralinger(NLS) equation that combines the leading-orderues of the third-order dispersion. Specifically, two-hump
nonlinear and dispersive effects. The NLS equation admitsolitary envelopes were found first, following a numerical
envelope-soliton solutions with a “sech” profile when the search procedurf9]. From the numerical results it is seen
carrier frequency of the pulse is in the anomalous dispersiothat the spacing of the two humps increases as third-order
regime. The peak power required to generate a NLS solitomlispersion becomes less important and, in the NLS limit, the
is inversely proportional to the square of its width and di-wave profile approaches two well-separated NLS solitons.
rectly proportional to the strength of the fiber dispersion atHence, close to the NLS limit, the two-hump solitary-wave
the carrier wavelength of the pulse. It would seem most efsolutions of the MNLS equation may be viewed as bound
ficient, therefore, to operate near the zero-dispersion wavestates of two nonlocal NLS solitary waves pieced together so
length (ZDW), the borderline between normal and anoma-that their tails match smooth[®,10]. Based on this interpre-
lous dispersion, where dispersive effects are relatively weakation, a systematic asymptotic procedure can be devised to
[1]. This suggestion rests on the assumption, however, thabnstruct locally confined, symmetric bound states of the
one can in fact launch pulses with envelopes of permaneINLS equation featuring any number of humps greater than
form, such that nonlinearity and dispersion are in perfecbne[11]. The asymptotic results are consistent with numeri-
balance, near the ZDW in optical fibers. cal solutions of the MNLS equatidri0,11].

At the ZDW, where the group velocity is stationary, the In assessing the potential significance of multihump
dispersive term of the NLS equation vanishes and a thirdbound states in nonlinear fiber optics, it is important to in-
order-derivative dispersive term must be included in order taquire into their stability against perturbations. In prior work,
achieve a balance between nonlinear and dispersive effecthis question was addressed via numerical simulations of the
Unlike the NLS equation, however, no analytical envelope-MNLS equation using two-hump bound states as initial con-
soliton solutions of this modified NLSMNLS) equation, ditions and monitoring their subsequent evolution along the
that replaces the NLS equation near the ZDW, are availabldiber [10]. According to these simulations, two-hump bound

Based on asymptotic studies of the steady MNLS equastates with appreciable third-order dispersion, after traveling
tion treating the third-order dispersive term as a small perstably for some distance, eventually broke down. On the
turbation[2-5], it is now known that NLS solitons become other hand, close to the NLS limit where the two humps are
nonlocal—they feature short-scale oscillatory tails with non-weakly coupled, no such instability was observed.
zero amplitude at infinity. Accordingly, when a pulse in the Apart from direct numerical simulations, the stability
form of a NLS soliton is used as initial condition of the question has been studied analytically by treating bound
MNLS equation, short-scale oscillations are radiated, causstates as weakly interacting NLS solitary wayd2,13.
ing the pulse to decay as it propagates along the flleand  However, this approach cannot be relied upon to obtain
schemes for absorbing the emitted radiation have been praguantitative results for bound states with closely spaced
posed[7]. Hence, when perturbed with a third-order disper-humps as is the case near the ZDW. Moreover, as pointed
sive term, NLS solitons do not survive, consistent with theout in[11], even close to the NLS limit when the humps are
claim that the MNLS equation does not accept locally confar apart, the construction of steady bound states cannot be
fined solitary-wave solutions with a single hurf§l. completely explained by merely superposing nonlocal soli-
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tary waves so as to cancel the radiated oscillatory tails atvherea satisfies
infinity. .
In the present paper, we examine in some detail the sta- —iaz+ Bag—Ka+ a’a* +iﬁ§—ia§§§= 0, 5)
bility characteristics of the two-hump bound state of the
MNLS equation that is found closest to the ZDW and for with
which third-order dispersion is most significant. Given also

its relatively simple shape, this is perhaps the most relevant ,6’_=,3+ 3Q, K=K+ rQ+ BO%+ 083,
of all bound states to nonlinear pulse transmission near the .
ZDW. Through a combination of linear stability analysis and v=v+2B0+302 (6)

numerical simulations, it is demonstrated that, under certain o _
conditions, this bound state can in fact propagate stably fofhe parameter§) andK amount to shifts in the carrier fre-

long distances in the presence of perturbations. quency and wave number, respectively, whilallows for a
shift in the speed of the envelope which, to leading order,
Il. STEADY BOUND STATES propagates at the group speed corresponding to the carrier
frequency.

The envelope of a nonlinear pulse near the ZDW of a |t is convenient to normalize the envelope amplitude by
single-mode optical fiber is governed by the MNLS equationrescaling variables according to

[14] _ _ _
a:|K|1/2ar, §:|K|fl/3§r, Z=|K|712’ (7)

E—ik—gE—k—gE 100 o X (1)
z 12 e T cagy 2 ’ so that, after dropping the primes, H§) becomes
whereE stands for the electric field, denotes the propaga- —iazt+\ag,—sat a’a* +ivag—iag=0, 8

tion distance along the fibet,is the retarded timej, is the
Kerr coefficient,wg is the carrier frequency, is the vacuum  where
speed of lightag is the effective fiber core area, ands the

fiber loss coefficient. The coefficienky andky of the two B v —
dispersive terms in Eql) are the second and third deriva- = K(e’ v= K2e s=sgnkK. 9
tives of the carrier wave number evaluated at the carrier fre- K] K]

guency.

Concentrating on solitary-wave envelopes, we then seek

We shall use dimensionless variables throughout, special solutions of Eq(8) such thata=re® maintains a

1KY 6|y \ 3 permanent formg,=0) and has limited duration:
Z=-—512z, T=—(sgnk}) —) T, %R,
To kg r(&)—0 (&—*o). (103
A= woNy 1/21. E 2 Moreover, without any loss, the condition
k| Cags o=
0:—0 (£—+) (10b)

T, being a characteristic pulse duration. The MNLS equation
(1) then takes the form is imposed, absorbing intQ a possible frequency shift at the
solitary-wave tails.

. . 2 _
Az +iBATT+ArrrtiA“AT +TA=0, 3 It turns out[9] that Eq.(8) (with ay=0) subject to the
boundary conditions(10) defines a nonlinear eigenvalue
where : ; h
problem, N\ being the eigenvalue parameter; solitary-wave
sgnkg 0

6To|K. )2/3 aT? solutions are possible only at specific valuesiofind v

K] = m =s/\ (sA>0). Corresponding to each eigenvalue there is in
0 0

2 fact a one-parameter family of solitary-wave solutions of the

: P MNLS equation: once the carrier frequency is specified by
The parameter measures the relative significance of " o
second-order dispersion near the ZDW: exactly at the ZDWf'XIng Q, !t is clear from Eqgs(6), (7), and(9) that_the enve-
kg vanishes angg=0, while, in the other extreme, far from lgpe prc_)f!le and speed are completel;_/ determined. Alterna-
the ZDW where second-order dispersion dominates thirdliVely, fixing the envelope peak amplitude by choosikg
order dispersiofiTo|K!|>|K2]), |8/>1 and the NLS limit is determines the envelope profile completely, including the

recovered. The parametér is a measure of losses in the carrier frequency and the envelope speed. .
fiberv P ! ! ! We also remark that bound states near the ZDW, being

eigenstates, are fundamentally different from NLS solitons
for which both the peak amplitude and the carrier frequency
may be specified independently. Moreover, the instantaneous
frequency distribution associated with a bound state,

_ Refatim{a,}—Im{a}Re{a,}
E=T—vZ, (4b) & |al? ’

In discussing steady bound states, welset0 and con-
sider the effects of loss in a later section. Following the
approach taken ifi9], we first write

A=a(¢,2)exdi(QE-KZ)], (48

(11)
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FIG. 1. Fundamental bound state: amplitydé (—); instanta-

neous frequency, (---).

varies throughout the wave profile, while it is constagual
to zero according to the normalizati¢hOb)] for a NLS soli-

ton.

The discussion in this paper will focus on the stability of
the two-hump bound state corresponding to the minimum

1
(0—2 fg)P—)\oQ§§+(l_3gz_ f4)Q- )\_o Pt Pege=0.
(14b)

In the limit |¢|—, f and g—0 since the underlying
bound state is of limited duration, and the systéi) re-
duces to

1
1
0
Hence,
P 1
Q| | Fi
xext (|gl—=), (16)
where
K
o= —ii)(l—)\okz). (17
Ao

eigenvaluex =\ ,=2.4647; this is the bound state closest to o o ) )

the ZDW and will be referred to as the fundamental bound™"o™M Eq.(17), it is apparent that if is pure imaginaryo
state. The amplitude profile and instantaneous frequency di§as to be pure imaginary as well. Accordingly, for instability
tribution of the fundamental bound state are relatively simpld® be present (Re>0), it is necessary that Re<0 so the

in comparison to those of other multihump bound states, andiSturbance must be trapped close to the main pulse:

are displayed in Fig. 1 as computed by a shooting procedure

[9].

Ill. LINEAR STABILITY ANALYSIS

7)o "
o~ (|&]—o). (18

The equation syster(l4) subject to the boundary condi-

We first examine the stability of the fundamental boundtions(18) defines an eigenvalue problem for the parameter
stateag(£) = f(£)+ig(£) to infinitesimal perturbations. For It is important to note that itr is an eigenvalue so are &

this purpose, we write

a(¢,Z)=ag(§) +b(£,2),

and upon substitution into E@8), retaining terms linear in

b=p+iq, the disturbance equation reads

i
—ibs+ )\Obgg—b+a§b* +2|ag|?b+ " be—ibg=0.
0

(12

ando*. Hence the existence of a trapped disturbance is also
a sufficient condition for instability, and the eigenvalue spec-
trum is symmetric about the Re and Im o axes.

To search for trapped disturbances, the following numeri-
cal procedure was adopted. The systéi) together with
the boundary conditiond 8) were discretized using a fourth-
order-accurate finite-difference method, and the spectrum of
o was first determined from the resulting matrix eigenvalue
problem via a global eigenvalue solver. Once an initial esti-
mate for the eigenvalues of interest had been obtained, the
inverse power method with shifting was employed to im-

Following the standard procedure, we then seek separabfgrove the mode-shape resolution and the eigenvalue accu-

solutions of Eq(12) in the form
[p] _ P(é)]
q

Q(¢)
whereP andQ satisfy

XexpagZ),

13

1
(0+2f9)Q+ NP+ (3f2+g°—1)P— o Qe+ Qe =0,

(143

racy.

For the fundamental bound state, in addition to the con-
tinuous spectrum of neutral disturbances on thedtraxis,
a pair of eigenvalues is found on the Re axis at
o==*0.026 corresponding to a trapped mode. From the am-
plitude distribution shown in Fig. 2, it is evident that this
mode is only marginally trapped relative to the span of the
bound state, and the instability develops over a long propa-
gation distance as indicated by the small growth rate. This
behavior is consistent with the rooksof the dispersion re-
lation (17) when given the growth rate. Specifically, there
is a root corresponding to a short-scale oscillation that de-
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: . . . numerically computed growth rate agreed well with that de-
termined by the modal analysis.

Based on the linear stability analysis, therefore, the fun-
damental bound state is unstable to infinitesimal distur-
bances. The instability develops at a relatively slow rate,
however, and it would be interesting to know how nonlinear-
ity may affect the evolution of the disturbance. This question
is addressed below by numerical simulations of the MNLS
equation.

0.0

P+t P Q

05| i .
.

‘E IV. NONLINEAR EVOLUTION

Lof ‘ ‘ 1 In solving the MNLS equatiori3) numerically, the com-
40 30 20 -10 0 10 20 plex envelopeA(Z,T) is advanced irz>0 by the symme-
£ trized split-step Fourier method. 4], starting with a given
. . profile atZ=0 for —oo<T<e. A prominent feature of the
FIG. 2. Trapped mode with growth rate=0.026: amplitude  MNLS equation is the possibility of a resonance of the main
(P*+Q% ™ (—); real partP (~-); imaginary parQ (). nonlinear pulse with small-amplitude waves that manifests
) ) ) itself as radiation of an oscillatory tail propagating in the
cays slowly for§< 0, in agreement with the long tail seen Giraction of T<0. Accordingly, as the pulse evolves, the left
behind the main peak in Fig. 2. edge of the computational domain is closely monitored for
Apart from the modal analysis presented above, the posycoming waves, and the entire domain is doubled to accom-

sibility for linear instability was also explored by solving Eq. yqdate this radiation. The conservation law
(12) numerically using a Gaussian initial condition with the

same full width at half maximunfFWHM) as the fundamen- d (= o
f |A|2dT=—2I‘f |A|2dT,

tal bound state. For this purpose, a split-step Fourier spectral dz
method was used, and the computational domain was ex-

panded continually so as to avoid artificial reflections fromyynich follows from Eq.(3), serves as a check of the calcu-
its edges. As a check of the numerical procedure, it Wagytions.

verified that the conservation law We begin by solving the MNLS equatidB) without loss
(I'=0) starting atZ=0 with the exact profile of the funda-
el fm |b|2d¢=i ” (agzbz—agb*z)dg, mental bounq state so perturbatiqns come only from the
dz )~ —w small truncation error in the numerical scheme. For conve-

nience, the choic€)=0, K=1 is made, givingB=X\, ac-
which follows from Eq.(12), was satisfied. The evolution of cording to Eq.(9). Although the fundamental bound state is
the disturbance shown in Fig. 3 indicates that part of thdinearly unstable, numerical simulations over long distances
initial perturbation disperses away, leaving a growing peakZ=1000) showed that only a small amount of radiation was
similar to the instability mode found earlier by the modal being emitted in the direction af<0, the main pulse propa-
analysis. When in fact the exact shape of the unstablgating stably without any sign of breakup. Hence it appears
trapped mode was used as initial condition to ER), the  that nonlinear effects provide a stabilizing action. This is in

FIG. 3. Unstable evolution of an infinitesimal initial disturbance to the fundamental bound state.
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FIG. 4. Evolution of the fundamental bound state under a Gaussian disturbaheeaivith amplitude of 0.14.

contrast to the results presented [it0] where two-hump creased dispersion relative to the unperturbed bound state.
bound states with closely spaced humps were found to b&his seems reasonable considering the fact that a bound state
unstable, rapidly collapsing after propagating a distance ofichieves a balance between nonlinear and dispersive effects:
Z~100 along the fiber. the increase in amplitude should come with a commensurate
increase in dispersion.
As the amplitude of the initial perturbation is increased,
however, the capacity of the pulse to adjust and approach a
To gain further insight into the role of nonlinearity in neighboring bound state diminishes. This is illustrated in Fig.
curtailing linear instability, we now explore the evolution of 6 for an initial perturbation amplitude of 0.15; while some
the fundamental bound state under the same conditions agljustment takes place initially, an instability eventually de-
above (2=0, K=1; B=\g) but in the presence of finite velops that overtakes the pulse over a distance of 75-100
perturbations. Keeping the phase and hence the instantanits of Z. Therefore the fundamental bound state shows
neous frequency distribution intact, we add a Gaussian peeonditional stability to amplitude perturbations: as long as
turbation to the amplitude with the same FWHM as the un-the initial perturbation amplitude is below a certain thresh-
perturbed state. The evolution of the pulse for a perturbatiomld, a perturbed fundamental bound state evolves towards a
amplitude of 0.14 is shown in Fig. 4. After an initial adjust- neighboring state and can propagate for long distances with-
ment period Z=15) during which energy is radiated mostly out collapsing. Clearly, nonlinearity plays an important part
in the direction ofT<0, the pulse reaches a more or lessduring this adjustment but, given that the fundamental bound
stable form similar to, but not quite the same as, the unper-
turbed bound state. Specifically Z2& 130, the pulse ampli-
tude shows an increase from 1.615 to 1.804 and the FWHM ' ' ' T
decreases from 6.454 to 5.993 as shown in Fig. 5. These
changes in amplitude and width are in accordance with the s
scalings(7) of steady bound states foiK| =1.248. We also
remark that atZ=130 the instantaneous frequency of the
pulse, as defined in Eq11), experiences a shift of about ol
0.06 at the tails of the envelope from its initial value of
zero. Note that, for the fundamental bound state with
|K|=1.248, Eq.(9) gives B=\o|K|Y3=2.653 and, from
Eq. (6), it follows that Q=(B8—8)/3=0.063, consistent
with the frequency shift found at the tails of the pulse. More-
over, the wave speed of the pulseZat 130 is in excellent L '
agreement with the steady-state value computed from Egs. B 30
(6) and(9) for |K|=1.248.

In response to the amplitude perturbation, therefore, the FIG. 5. Comparison of profile aZ=130 (—) against unper-
pulse drifts towards a neighboring bound state with carrieturbed profile(—-—) of the fundamental bound state under a Gauss-
frequency shifted away from the ZDW and hence with in-ian initial disturbance aZ=0 with amplitude of 0.14.

A. Amplitude perturbations
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FIG. 6. Evolution of the fundamental bound state under a Gaussian disturbaheeaitvith amplitude of 0.15.

state is unstable to infinitesimal perturbations, an entirelyDuring 0<Z=10, the pulse radiates a part of its energy as it
steady state cannot be approached. evolves to a state of lower total energy with a peak amplitude
of 1.57 and a pulse width of 6.57. Once again, these changes
are consistent with the scalingg) of steady bound states
. . : K|=0.94) but hereg< g, indicating that the pulse has
As noted earlier, unlike NLS solitons, the envelopes Of,(e|vo|lved in)tO a stateﬁcloger to the %DW Wherep dispersive
bound states near the ZDW have a variable frequency distrissrects are weaker. Whefl’ < —0.065, however, the pulse
bution or “chirp.” Since this feature apparently keeps the cg3nnot adjust to the frequency shift and breaks up over a
two humps bound together, it is useful to know how sensitiveyistance ofz~50, suggesting again that the fundamental
the pulse structure is to pel’turbations in the instantaneo%und state is 0n|y Conditiona”y Stable to frequency down_
frequency. For this purpose, we now explore the evolution okhifts. On the other hand, when a frequency upshiit (
the fundamental bound stataith =0, K=1; B=\o) in  >0) is imposed aZ=0, the pulse breaks up over a short
Z>0 when atZ=0 it is perturbed by a constant frequency distance even for very small’.
shift ' Furthermore, we find qualitatively the same behavior if at
Numerical results foK)’ =—0.064 are shown in Fig. 7. Z=0 we allow for more general disturbances to the instan-

B. Phase perturbations

1Al

FIG. 7. Evolution of the fundamental bound state under a frequency@hift—0.064 atZ=0.
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taneous frequency of the fundamental bound state. In the
presence of a Gaussian perturbation, for example, the puls
appears to evolve towards a state of lower total energy if the
minimum instantaneous frequency is decreased by 10% bu
collapses over a distance @~90 when the frequency is
decreased by 15%. As before, any upshift in frequency away ’
from the ZDW results in rapid instability and breakup. 10

This behavior can be understood intuitively by noting that
as the carrier frequency of the pulse is shifted away from the
ZDW, steady bound states require a higher peak amplitude 2 s
because of the increased second-order dispersion. A highe
peak amplitude would in turn require an increase in the total
pulse energy, however, so the pulse cannot adjust to a fre
quency upshift. In contrast, when a frequency downshift is 0 20 !
imposed, second-order dispersion becomes less important ¢ T
a steady bound state requires less energy, which the pulse

can accommodate by radiating small-amplitude dispersive F'G- 8. Evolution of a pulse which &=0 has a Gaussian
waves amplitude profile and phase close to that of the fundamental bound

state.

D%

20 40 60

C. More general initial profile

Based on the results presented thus far, it is conclude »=3.8ps according to the scalings used in E8), the

that if the amplitude and phase of the fundamental boun imensionless distanc&=45 corresponds to about 19 000
state are slightly distorted the pulse may propagate stablp(

under certain conditions. From a practical standpoint, how-

ever, it may be diffi_cu_lt to tgilor both the pulse shape andsibIe to form a pulse resembling a two-hump bound state that
phase exactly, and it !s_QeS|rab_Ie to k”OVV. how far from ar?may propagate for a considerable distance, as long as the
exact bound state the initial profile can be if a stable shape ifjia| profile retains some features of a bound state. The fact
to ?VOIVe'tt t to add this i id ththat a phase modulation can have a stabilizing influence in
N an attempt 1o address tis ISsue, we now consider thg, presence of third-order dispersion was also recognized in
evolution of a pulse whose amplitude distribution initially is [7], where it was shown that trains of single-hump pulses

quite different from that of the fundamental bound state.. ) id be stabilized by applving a proper phase modulation
Specifically, we solve the MNLS equation taking the ampli'However, this study )\:vaspczngerngd \?vithpthe case of weak

tude profile aZ=0 to be a Gaussian with roughly the SaMe€hird-order dispersion while the results presented here are for
width as the fundamental bound stététh A =0,K=1) and strong third-orl?jer dispersion. P
a

the phase to be close to that of the exact state but with
slight frequency upshift at the left tail. In the dimensionless

ind k" =0.074 pd/km [15], and with the choicg8=\, so

Based on this numerical experiment, it would appear fea-

variables of Eq(3), the initial envelope profile is expressed V. DISCUSSION
& The present study has focused on the fundamental two-
A(T)=1.7 exg —0.067T?)exp(—iO), hump bound state for which third-order dispersion is most
significant. From a practical standpoint, the relatively stable
where behavior of this pulse is favorable since, for a given pulse
duration, the fundamental bound state can exist closest to the
O(T)=1.49tan i(sinh 1.76) — 1.24 erf0.4T+5.25]. ZDW and hence has the lowest peak-power requirement in

comparison with all the other bound states. The required

When the MNLS equatiori3) is solved subject to this peak power may be computed from E¢), (7), and(9) as
initial condition, again with the choic=X\,, =0 and a function of carrier wavelength arads [14]. For instance, if
neglecting loss, the result is shown in Fig. 8. Over a veryonce again a carrier wavelength 0.3 nm away from the ZDW
short distance, a depression forms in the middle of the pulsis chosen, the peak power to generate the fundamental two-
leaving two well-defined peaks. As the pulse adjusts to thiswump bound state turns out to be about one-third of that
change some energy is radiated, and over a distancg of required to launch a NLS soliton with duration comparable
~10 the pulse transforms into a shape closely resemblingp one of the humps at the threshold for radiatigge(4).
that of a two-hump bound state in both amplitude and instanThus considerable savings in power can be attained operat-
taneous frequency. Even though this shape is not completeing close to the ZDW.
stable—an instability develops nedr=45 that eventually On the other hand, it is important to ask how dissipation
overtakes the pulse—the same Gaussian pulse without will affect pulse propagation near the ZDW. It is known that
phase modulation & =0 would evolve into a continuously in the presence of relatively weak dissipation a NLS soliton
radiating single peak rather than the quasisteady two-humpndergoes a gradual change in amplitude and width as it
profile obtained here. Note that, for a carrier wavelength 0.3oses energy14]. To determine whether loss is a weak per-
nm away from the ZDW in pure silica where the group- turbation to the MNLS equatiofB), the coefficieni” may be
dispersion coefficients take the valuk’é=—0.035pékm  computed. Specifically, for a carrier wavelength 0.3 nm
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away from the ZDW and using the value=0.05 km* for ~ wavelength 0.3 nm away from the ZDW, this value 8f

the fiber loss coefficient which can be obtained for acorresponds to 11% decrease]kfi| which would normally
dispersion-shifted fibgri6], the normalized loss IE~10. In  occur over a wavelength range of 0.05 nm in pure silica. As
view of the fact that the nonlinear and dispersive terms irmentioned before, the pulse will radiate a part of its energy
Eqg. (3) areO(1), loss is clearly not a weak perturbation to for a decrease ifk”| but will completely collapse for any
the MNLS equation and in this case pulses are expected tocrease ink”|. Therefore, from a systems standpoint, loss
suffer a significant attenuation over a relatively short dis-and variations in the group-dispersion coefficients present
tance. the most formidable obstacles to transmission.

In practice, a judicious choice of the carrier wavelength Finally, we note that contrary to the argument$ia], the
(which also fixes the peak amplitude of a bound gtaiast  fact that bound states are eigensolutions does not necessarily
take into consideration the waveguide dispersion relation atuggest that they are inherently unstable. While it is true that
hand and the minimum loss attainable in a given situation. Isolitary-wave solutions of Eq8) do not form continuous
is possible that a distributed amplification scheme such afamilies in the parametex, when we consider Eq$4)—(7),
Raman gain could possibly work well with the fundamentalit is clear that a bound state corresponding to an eigenvalue
pulse considered here. In fact, it has been demonstrated thatay physically assume a continuous range of energies de-
in the absence of large disturbances, the fundamental pulggending on the carrier frequency. The results presented in
can propagate over a long distance. The benefits of usinthpis study suggest that the carrier frequency may shift to-
Raman gain depend of course on the amount of power rewvards or away from the ZDW depending on whether pertur-
quired to excite the Raman process compared with the sawpations induce, respectively, a loss or gain in pulse energy.
ings in power gained by operating close to the ZDW. AsThis adjustment, however, appears to occur only when
these loss-related issues require further study, they will nothanges are not too drastic. The relatively stable behavior of
be pursued here. the fundamental two-hump bound state demonstrated in this

In an actual waveguide, some fluctuation in the group-study certainly warrants further experimental and theoretical
dispersion coefficients is expected and hence it is useful tivestigations of pulse propagation near the ZDW.
determine how stable the pulses are to variations of this sort.
Based on the frequency perturbations considered egsker
Sec. IV B), we can obtain a rough idea of what might be
expected in practice. The frequency downshiit’= Effort sponsored by the Air Force Office of Scientific Re-
—0.064, for_instance, results in an effective second-ordegearch, Air Force Materials Command, USAF, under Grant
dispersion of3=2.275 according to Eq6), and, at a carrier Numbers F49620-95-1-0047 and F49620-95-1-0443.
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