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Stability of bound states near the zero-dispersion wavelength in optical fibers

David C. Calvo and T. R. Akylas
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 14 May 1997!

The propagation of weakly nonlinear pulses near the zero-dispersion wavelength~ZDW! in optical fibers is
governed by a modified nonlinear Schro¨dinger ~NLS! equation with a third-order-derivative dispersive term.
This equation is known to admit steady, multihump bound states that would require less peak power to launch
than an ordinary NLS soliton pulse of comparable duration and with carrier wavelength in the anomalous
dispersion regime. Here, the stability of the two-hump bound state for which third-order dispersion is most
significant is examined. Linear stability analysis indicates the presence of a mild instability withO(1022)
growth rate. Numerical solutions of the modified NLS equation, however, reveal that, under certain conditions,
nonlinearity has a stabilizing effect, permitting two-hump pulses to propagate for long distances without
collapsing. Depending on the type of perturbation, a perturbed bound state evolves to a neighboring state with
carrier frequency shifted either towards or away from the ZDW. The evolution of more general pulse profiles
near the ZDW is also considered and the effect of fiber loss is discussed.@S1063-651X~97!00810-6#

PACS number~s!: 42.81.Dp
le
ea
e
i

e
io

ito
di
a
e
v
a
ea
th
e

ec

e
ird
r t
ec
e

bl
ua
e
e
n

he
e
u

p
er
he
n

an

are

p
al
n
rder
the
ns.
ve
nd
r so
-
d to
the
an
ri-

p
in-
k,
the
n-

the
nd
ling
the
are

ty
nd

ain
ced
ted
re
t be
oli-
I. INTRODUCTION

The propagation of weakly nonlinear pulses in sing
mode optical fibers is governed in general by the nonlin
Schrödinger~NLS! equation that combines the leading-ord
nonlinear and dispersive effects. The NLS equation adm
envelope-soliton solutions with a ‘‘sech’’ profile when th
carrier frequency of the pulse is in the anomalous dispers
régime. The peak power required to generate a NLS sol
is inversely proportional to the square of its width and
rectly proportional to the strength of the fiber dispersion
the carrier wavelength of the pulse. It would seem most
ficient, therefore, to operate near the zero-dispersion wa
length ~ZDW!, the borderline between normal and anom
lous dispersion, where dispersive effects are relatively w
@1#. This suggestion rests on the assumption, however,
one can in fact launch pulses with envelopes of perman
form, such that nonlinearity and dispersion are in perf
balance, near the ZDW in optical fibers.

At the ZDW, where the group velocity is stationary, th
dispersive term of the NLS equation vanishes and a th
order-derivative dispersive term must be included in orde
achieve a balance between nonlinear and dispersive eff
Unlike the NLS equation, however, no analytical envelop
soliton solutions of this modified NLS~MNLS! equation,
that replaces the NLS equation near the ZDW, are availa

Based on asymptotic studies of the steady MNLS eq
tion treating the third-order dispersive term as a small p
turbation@2–5#, it is now known that NLS solitons becom
nonlocal—they feature short-scale oscillatory tails with no
zero amplitude at infinity. Accordingly, when a pulse in t
form of a NLS soliton is used as initial condition of th
MNLS equation, short-scale oscillations are radiated, ca
ing the pulse to decay as it propagates along the fiber@6#, and
schemes for absorbing the emitted radiation have been
posed@7#. Hence, when perturbed with a third-order disp
sive term, NLS solitons do not survive, consistent with t
claim that the MNLS equation does not accept locally co
fined solitary-wave solutions with a single hump@8#.
561063-651X/97/56~4!/4757~8!/$10.00
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It is interesting, on the other hand, that there exists
infinity of solitary-wave solution families of the MNLS
equation featuring more than one hump. These solutions
possible in the anomalous dispersion re´gime at discrete val-
ues of the third-order dispersion. Specifically, two-hum
solitary envelopes were found first, following a numeric
search procedure@9#. From the numerical results it is see
that the spacing of the two humps increases as third-o
dispersion becomes less important and, in the NLS limit,
wave profile approaches two well-separated NLS solito
Hence, close to the NLS limit, the two-hump solitary-wa
solutions of the MNLS equation may be viewed as bou
states of two nonlocal NLS solitary waves pieced togethe
that their tails match smoothly@9,10#. Based on this interpre
tation, a systematic asymptotic procedure can be devise
construct locally confined, symmetric bound states of
MNLS equation featuring any number of humps greater th
one@11#. The asymptotic results are consistent with nume
cal solutions of the MNLS equation@10,11#.

In assessing the potential significance of multihum
bound states in nonlinear fiber optics, it is important to
quire into their stability against perturbations. In prior wor
this question was addressed via numerical simulations of
MNLS equation using two-hump bound states as initial co
ditions and monitoring their subsequent evolution along
fiber @10#. According to these simulations, two-hump bou
states with appreciable third-order dispersion, after trave
stably for some distance, eventually broke down. On
other hand, close to the NLS limit where the two humps
weakly coupled, no such instability was observed.

Apart from direct numerical simulations, the stabili
question has been studied analytically by treating bou
states as weakly interacting NLS solitary waves@12,13#.
However, this approach cannot be relied upon to obt
quantitative results for bound states with closely spa
humps as is the case near the ZDW. Moreover, as poin
out in @11#, even close to the NLS limit when the humps a
far apart, the construction of steady bound states canno
completely explained by merely superposing nonlocal s
4757 © 1997 The American Physical Society
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4758 56DAVID C. CALVO AND T. R. AKYLAS
tary waves so as to cancel the radiated oscillatory tails
infinity.

In the present paper, we examine in some detail the
bility characteristics of the two-hump bound state of t
MNLS equation that is found closest to the ZDW and f
which third-order dispersion is most significant. Given a
its relatively simple shape, this is perhaps the most relev
of all bound states to nonlinear pulse transmission near
ZDW. Through a combination of linear stability analysis a
numerical simulations, it is demonstrated that, under cer
conditions, this bound state can in fact propagate stably
long distances in the presence of perturbations.

II. STEADY BOUND STATES

The envelope of a nonlinear pulse near the ZDW o
single-mode optical fiber is governed by the MNLS equat
@14#

Ez2 i
k09

2
Ett2

k0-

6
Ettt1 i

n2v0

caeff
E2E* 1

a

2
E50, ~1!

whereE stands for the electric field,z denotes the propaga
tion distance along the fiber,t is the retarded time,n2 is the
Kerr coefficient,v0 is the carrier frequency,c is the vacuum
speed of light,aeff is the effective fiber core area, anda is the
fiber loss coefficient. The coefficientsk09 andk0- of the two
dispersive terms in Eq.~1! are the second and third deriva
tives of the carrier wave number evaluated at the carrier
quency.

We shall use dimensionless variables throughout,

Z5
uk09u
T0

2 z, T52~sgnk0-!S 6uk09u
uk0-u D

1/3

T0
22/3t,

A5S v0n2

uk09ucaeff
D 1/2

T0E, ~2!

T0 being a characteristic pulse duration. The MNLS equat
~1! then takes the form

AZ1 ibATT1ATTT1 iA2A* 1GA50, ~3!

where

b52
sgnk09

2 S 6T0uk09u
uk0-u D 2/3

, G5
aT0

2

2uk09u
.

The parameterb measures the relative significance
second-order dispersion near the ZDW: exactly at the ZD
k09 vanishes andb50, while, in the other extreme, far from
the ZDW where second-order dispersion dominates th
order dispersion~T0uk09u@uk0-u), ubu@1 and the NLS limit is
recovered. The parameterG is a measure of losses in th
fiber.

In discussing steady bound states, we setG50 and con-
sider the effects of loss in a later section. Following t
approach taken in@9#, we first write

A5a~j,Z!exp@ i ~Vj2KZ!#, ~4a!

j5T2nZ, ~4b!
at

a-

nt
e

in
or
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n

-

n

,

-

wherea satisfies

2 iaZ1b̄ajj2K̄a1a2a* 1 i n̄aj2 iajjj50, ~5!

with

b̄5b13V, K̄5K1nV1bV21V3,

n̄5n12bV13V2. ~6!

The parametersV andK amount to shifts in the carrier fre
quency and wave number, respectively, whilen allows for a
shift in the speed of the envelope which, to leading ord
propagates at the group speed corresponding to the ca
frequency.

It is convenient to normalize the envelope amplitude
rescaling variables according to

a5uK̄u1/2a8, j5uK̄u21/3j8, Z5uK̄u21Z8 ~7!

so that, after dropping the primes, Eq.~5! becomes

2 iaZ1lajj2sa1a2a* 1 ivaj2 iajjj50, ~8!

where

l5
b̄

uK̄u1/3
, v5

n̄

uK̄u2/3
, s5sgn K̄. ~9!

Concentrating on solitary-wave envelopes, we then s
special solutions of Eq.~8! such thata5reiu maintains a
permanent form (aZ50) and has limited duration:

r ~j!→0 ~j→6`!. ~10a!

Moreover, without any loss, the condition

uj→0 ~j→6`! ~10b!

is imposed, absorbing intoV a possible frequency shift at th
solitary-wave tails.

It turns out @9# that Eq. ~8! ~with aZ50! subject to the
boundary conditions~10! defines a nonlinear eigenvalu
problem, l being the eigenvalue parameter; solitary-wa
solutions are possible only at specific values ofl and v
5s/l (sl.0). Corresponding to each eigenvalue there is
fact a one-parameter family of solitary-wave solutions of t
MNLS equation: once the carrier frequency is specified
fixing V, it is clear from Eqs.~6!, ~7!, and~9! that the enve-
lope profile and speed are completely determined. Alter
tively, fixing the envelope peak amplitude by choosingK̄
determines the envelope profile completely, including
carrier frequency and the envelope speed.

We also remark that bound states near the ZDW, be
eigenstates, are fundamentally different from NLS solito
for which both the peak amplitude and the carrier frequen
may be specified independently. Moreover, the instantane
frequency distribution associated with a bound state,

uj5
Re$a%Im$aj%2Im$a%Re$aj%

uau2
, ~11!
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56 4759STABILITY OF BOUND STATES NEAR THE ZERO- . . .
varies throughout the wave profile, while it is constant@equal
to zero according to the normalization~10b!# for a NLS soli-
ton.

The discussion in this paper will focus on the stability
the two-hump bound state corresponding to the minim
eigenvaluel[l052.4647; this is the bound state closest
the ZDW and will be referred to as the fundamental bou
state. The amplitude profile and instantaneous frequency
tribution of the fundamental bound state are relatively sim
in comparison to those of other multihump bound states,
are displayed in Fig. 1 as computed by a shooting proced
@9#.

III. LINEAR STABILITY ANALYSIS

We first examine the stability of the fundamental bou
statea0(j)5 f (j)1 ig(j) to infinitesimal perturbations. Fo
this purpose, we write

a~j,Z!5a0~j!1b~j,Z!,

and upon substitution into Eq.~8!, retaining terms linear in
b5p1 iq, the disturbance equation reads

2 ibZ1l0bjj2b1a0
2b* 12ua0u2b1

i

l0
bj2 ibjjj50.

~12!

Following the standard procedure, we then seek separ
solutions of Eq.~12! in the form

H p
qJ 5 H P~j!

Q~j!J
3exp~sZ!, ~13!

whereP andQ satisfy

~s12 f g!Q1l0Pjj1~3 f 21g221!P2
1

l0
Qj1Qjjj50,

~14a!

FIG. 1. Fundamental bound state: amplitudeuau ~—!; instanta-
neous frequencyuj ~---!.
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~s22 f g!P2l0Qjj1~123g22 f 2!Q2
1

l0
Pj1Pjjj50.

~14b!

In the limit uju→`, f and g→0 since the underlying
bound state is of limited duration, and the system~14! re-
duces to

sQ1l0Pjj2P2
1

l0
Qj1Qjjj50, ~15a!

sP2l0Qjj1Q2
1

l0
Pj1Pjjj50. ~15b!

Hence,

H P
QJ ; H 1

7 i J
3ekj ~ uju→`!, ~16!

where

s5S k

l0
6 i D ~12l0k2!. ~17!

From Eq.~17!, it is apparent that ifk is pure imaginary,s
has to be pure imaginary as well. Accordingly, for instabil
to be present (Res.0), it is necessary that RekÞ0 so the
disturbance must be trapped close to the main pulse:

H P
QJ→0 ~ uju→`!. ~18!

The equation system~14! subject to the boundary cond
tions~18! defines an eigenvalue problem for the parametes.
It is important to note that ifs is an eigenvalue so are2s
ands* . Hence the existence of a trapped disturbance is a
a sufficient condition for instability, and the eigenvalue spe
trum is symmetric about the Res and Ims axes.

To search for trapped disturbances, the following nume
cal procedure was adopted. The system~14! together with
the boundary conditions~18! were discretized using a fourth
order-accurate finite-difference method, and the spectrum
s was first determined from the resulting matrix eigenva
problem via a global eigenvalue solver. Once an initial e
mate for the eigenvalues of interest had been obtained,
inverse power method with shifting was employed to im
prove the mode-shape resolution and the eigenvalue a
racy.

For the fundamental bound state, in addition to the c
tinuous spectrum of neutral disturbances on the Ims axis,
a pair of eigenvalues is found on the Res axis at
s560.026 corresponding to a trapped mode. From the a
plitude distribution shown in Fig. 2, it is evident that th
mode is only marginally trapped relative to the span of
bound state, and the instability develops over a long pro
gation distance as indicated by the small growth rate. T
behavior is consistent with the rootsk of the dispersion re-
lation ~17! when given the growth rates. Specifically, there
is a root corresponding to a short-scale oscillation that
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4760 56DAVID C. CALVO AND T. R. AKYLAS
cays slowly forj,0, in agreement with the long tail see
behind the main peak in Fig. 2.

Apart from the modal analysis presented above, the p
sibility for linear instability was also explored by solving E
~12! numerically using a Gaussian initial condition with th
same full width at half maximum~FWHM! as the fundamen
tal bound state. For this purpose, a split-step Fourier spe
method was used, and the computational domain was
panded continually so as to avoid artificial reflections fro
its edges. As a check of the numerical procedure, it w
verified that the conservation law

d

dZ E
2`

`

ubu2dj5 i E
2`

`

~a0*
2b22a0

2b* 2!dj,

which follows from Eq.~12!, was satisfied. The evolution o
the disturbance shown in Fig. 3 indicates that part of
initial perturbation disperses away, leaving a growing pe
similar to the instability mode found earlier by the mod
analysis. When in fact the exact shape of the unsta
trapped mode was used as initial condition to Eq.~12!, the

FIG. 2. Trapped mode with growth rates50.026: amplitude
(P21Q2)1/2 ~—!; real partP ~–•–!; imaginary partQ ~---!.
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numerically computed growth rate agreed well with that d
termined by the modal analysis.

Based on the linear stability analysis, therefore, the f
damental bound state is unstable to infinitesimal dist
bances. The instability develops at a relatively slow ra
however, and it would be interesting to know how nonline
ity may affect the evolution of the disturbance. This quest
is addressed below by numerical simulations of the MN
equation.

IV. NONLINEAR EVOLUTION

In solving the MNLS equation~3! numerically, the com-
plex envelopeA(Z,T) is advanced inZ.0 by the symme-
trized split-step Fourier method@14#, starting with a given
profile atZ50 for 2`,T,`. A prominent feature of the
MNLS equation is the possibility of a resonance of the m
nonlinear pulse with small-amplitude waves that manife
itself as radiation of an oscillatory tail propagating in th
direction ofT,0. Accordingly, as the pulse evolves, the le
edge of the computational domain is closely monitored
incoming waves, and the entire domain is doubled to acco
modate this radiation. The conservation law

d

dZ E
2`

`

uAu2dT522GE
2`

`

uAu2dT,

which follows from Eq.~3!, serves as a check of the calc
lations.

We begin by solving the MNLS equation~3! without loss
(G50) starting atZ50 with the exact profile of the funda
mental bound state so perturbations come only from
small truncation error in the numerical scheme. For con
nience, the choiceV50, K51 is made, givingb5l0 ac-
cording to Eq.~9!. Although the fundamental bound state
linearly unstable, numerical simulations over long distan
(Z51000) showed that only a small amount of radiation w
being emitted in the direction ofT,0, the main pulse propa
gating stably without any sign of breakup. Hence it appe
that nonlinear effects provide a stabilizing action. This is
FIG. 3. Unstable evolution of an infinitesimal initial disturbance to the fundamental bound state.
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FIG. 4. Evolution of the fundamental bound state under a Gaussian disturbance atZ50 with amplitude of 0.14.
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contrast to the results presented in@10# where two-hump
bound states with closely spaced humps were found to
unstable, rapidly collapsing after propagating a distance
Z'100 along the fiber.

A. Amplitude perturbations

To gain further insight into the role of nonlinearity i
curtailing linear instability, we now explore the evolution
the fundamental bound state under the same condition
above ~V50, K51; b5l0! but in the presence of finite
perturbations. Keeping the phase and hence the insta
neous frequency distribution intact, we add a Gaussian
turbation to the amplitude with the same FWHM as the u
perturbed state. The evolution of the pulse for a perturba
amplitude of 0.14 is shown in Fig. 4. After an initial adjus
ment period (Z&15) during which energy is radiated most
in the direction ofT,0, the pulse reaches a more or le
stable form similar to, but not quite the same as, the unp
turbed bound state. Specifically atZ5130, the pulse ampli-
tude shows an increase from 1.615 to 1.804 and the FW
decreases from 6.454 to 5.993 as shown in Fig. 5. Th
changes in amplitude and width are in accordance with
scalings~7! of steady bound states foruK̄u51.248. We also
remark that atZ5130 the instantaneous frequency of t
pulse, as defined in Eq.~11!, experiences a shift of abou
0.06 at the tails of the envelope from its initial value
zero. Note that, for the fundamental bound state w
uK̄u51.248, Eq.~9! gives b̄5l0uK̄u1/352.653 and, from
Eq. ~6!, it follows that V5(b̄2b)/350.063, consistent
with the frequency shift found at the tails of the pulse. Mo
over, the wave speed of the pulse atZ5130 is in excellent
agreement with the steady-state value computed from E
~6! and ~9! for uK̄u51.248.

In response to the amplitude perturbation, therefore,
pulse drifts towards a neighboring bound state with car
frequency shifted away from the ZDW and hence with
be
of

as

ta-
r-
-
n

r-

M
se
e

h

-

s.

e
r

-

creased dispersion relative to the unperturbed bound s
This seems reasonable considering the fact that a bound
achieves a balance between nonlinear and dispersive eff
the increase in amplitude should come with a commensu
increase in dispersion.

As the amplitude of the initial perturbation is increase
however, the capacity of the pulse to adjust and approac
neighboring bound state diminishes. This is illustrated in F
6 for an initial perturbation amplitude of 0.15; while som
adjustment takes place initially, an instability eventually d
velops that overtakes the pulse over a distance of 75–
units of Z. Therefore the fundamental bound state sho
conditional stability to amplitude perturbations: as long
the initial perturbation amplitude is below a certain thres
old, a perturbed fundamental bound state evolves towar
neighboring state and can propagate for long distances w
out collapsing. Clearly, nonlinearity plays an important p
during this adjustment but, given that the fundamental bou

FIG. 5. Comparison of profile atZ5130 ~—! against unper-
turbed profile~–•–! of the fundamental bound state under a Gau
ian initial disturbance atZ50 with amplitude of 0.14.



4762 56DAVID C. CALVO AND T. R. AKYLAS
FIG. 6. Evolution of the fundamental bound state under a Gaussian disturbance atZ50 with amplitude of 0.15.
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state is unstable to infinitesimal perturbations, an entir
steady state cannot be approached.

B. Phase perturbations

As noted earlier, unlike NLS solitons, the envelopes
bound states near the ZDW have a variable frequency di
bution or ‘‘chirp.’’ Since this feature apparently keeps t
two humps bound together, it is useful to know how sensit
the pulse structure is to perturbations in the instantane
frequency. For this purpose, we now explore the evolution
the fundamental bound state~with V50, K51; b5l0! in
Z.0 when atZ50 it is perturbed by a constant frequen
shift V8.

Numerical results forV8520.064 are shown in Fig. 7
ly

f
ri-

e
us
f

During 0,Z&10, the pulse radiates a part of its energy a
evolves to a state of lower total energy with a peak amplitu
of 1.57 and a pulse width of 6.57. Once again, these chan
are consistent with the scalings~7! of steady bound state
(uK̄u50.94) but hereb̄,b, indicating that the pulse ha
evolved into a state closer to the ZDW where dispers
effects are weaker. WhenV8&20.065, however, the pulse
cannot adjust to the frequency shift and breaks up ove
distance ofZ'50, suggesting again that the fundamen
bound state is only conditionally stable to frequency dow
shifts. On the other hand, when a frequency upshift (V8
.0) is imposed atZ50, the pulse breaks up over a sho
distance even for very smallV8.

Furthermore, we find qualitatively the same behavior if
Z50 we allow for more general disturbances to the inst
FIG. 7. Evolution of the fundamental bound state under a frequency shiftV8520.064 atZ50.
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56 4763STABILITY OF BOUND STATES NEAR THE ZERO- . . .
taneous frequency of the fundamental bound state. In
presence of a Gaussian perturbation, for example, the p
appears to evolve towards a state of lower total energy if
minimum instantaneous frequency is decreased by 10%
collapses over a distance ofZ'90 when the frequency is
decreased by 15%. As before, any upshift in frequency a
from the ZDW results in rapid instability and breakup.

This behavior can be understood intuitively by noting th
as the carrier frequency of the pulse is shifted away from
ZDW, steady bound states require a higher peak amplit
because of the increased second-order dispersion. A hi
peak amplitude would in turn require an increase in the to
pulse energy, however, so the pulse cannot adjust to a
quency upshift. In contrast, when a frequency downshif
imposed, second-order dispersion becomes less importa
a steady bound state requires less energy, which the p
can accommodate by radiating small-amplitude dispers
waves.

C. More general initial profile

Based on the results presented thus far, it is conclu
that if the amplitude and phase of the fundamental bo
state are slightly distorted the pulse may propagate st
under certain conditions. From a practical standpoint, ho
ever, it may be difficult to tailor both the pulse shape a
phase exactly, and it is desirable to know how far from
exact bound state the initial profile can be if a stable shap
to evolve.

In an attempt to address this issue, we now consider
evolution of a pulse whose amplitude distribution initially
quite different from that of the fundamental bound sta
Specifically, we solve the MNLS equation taking the amp
tude profile atZ50 to be a Gaussian with roughly the sam
width as the fundamental bound state~with V50, K51! and
the phase to be close to that of the exact state but wi
slight frequency upshift at the left tail. In the dimensionle
variables of Eq.~3!, the initial envelope profile is expresse
as

A~T!51.7 exp~20.067T2!exp~2 iU!,

where

U~T!51.49 tan21~sinh 1.76T!21.24 erf@0.4~T15.25!#.

When the MNLS equation~3! is solved subject to this
initial condition, again with the choiceb5l0 , V50 and
neglecting loss, the result is shown in Fig. 8. Over a v
short distance, a depression forms in the middle of the p
leaving two well-defined peaks. As the pulse adjusts to
change some energy is radiated, and over a distanceZ
'10 the pulse transforms into a shape closely resemb
that of a two-hump bound state in both amplitude and inst
taneous frequency. Even though this shape is not comple
stable—an instability develops nearZ545 that eventually
overtakes the pulse—the same Gaussian pulse witho
phase modulation atZ50 would evolve into a continuously
radiating single peak rather than the quasisteady two-hu
profile obtained here. Note that, for a carrier wavelength
nm away from the ZDW in pure silica where the grou
dispersion coefficients take the valuesk9520.035 ps2/km
e
lse
e
ut
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d
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a

p
3

and k-50.074 ps3/km @15#, and with the choiceb5l0 so
T053.8 ps according to the scalings used in Eq.~3!, the
dimensionless distanceZ545 corresponds to about 19 00
km.

Based on this numerical experiment, it would appear f
sible to form a pulse resembling a two-hump bound state
may propagate for a considerable distance, as long as
initial profile retains some features of a bound state. The
that a phase modulation can have a stabilizing influence
the presence of third-order dispersion was also recognize
@7#, where it was shown that trains of single-hump puls
could be stabilized by applying a proper phase modulati
However, this study was concerned with the case of w
third-order dispersion while the results presented here are
strong third-order dispersion.

V. DISCUSSION

The present study has focused on the fundamental t
hump bound state for which third-order dispersion is m
significant. From a practical standpoint, the relatively sta
behavior of this pulse is favorable since, for a given pu
duration, the fundamental bound state can exist closest to
ZDW and hence has the lowest peak-power requiremen
comparison with all the other bound states. The requi
peak power may be computed from Eqs.~2!, ~7!, and~9! as
a function of carrier wavelength andaeff @14#. For instance, if
once again a carrier wavelength 0.3 nm away from the ZD
is chosen, the peak power to generate the fundamental
hump bound state turns out to be about one-third of t
required to launch a NLS soliton with duration comparab
to one of the humps at the threshold for radiation (b'4).
Thus considerable savings in power can be attained ope
ing close to the ZDW.

On the other hand, it is important to ask how dissipati
will affect pulse propagation near the ZDW. It is known th
in the presence of relatively weak dissipation a NLS solit
undergoes a gradual change in amplitude and width a
loses energy@14#. To determine whether loss is a weak pe
turbation to the MNLS equation~3!, the coefficientG may be
computed. Specifically, for a carrier wavelength 0.3 n

FIG. 8. Evolution of a pulse which atZ50 has a Gaussian
amplitude profile and phase close to that of the fundamental bo
state.
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away from the ZDW and using the valuea50.05 km21 for
the fiber loss coefficient which can be obtained for
dispersion-shifted fiber@16#, the normalized loss isG'10. In
view of the fact that the nonlinear and dispersive terms
Eq. ~3! areO(1), loss is clearly not a weak perturbation
the MNLS equation and in this case pulses are expecte
suffer a significant attenuation over a relatively short d
tance.

In practice, a judicious choice of the carrier waveleng
~which also fixes the peak amplitude of a bound state! must
take into consideration the waveguide dispersion relation
hand and the minimum loss attainable in a given situation
is possible that a distributed amplification scheme such
Raman gain could possibly work well with the fundamen
pulse considered here. In fact, it has been demonstrated
in the absence of large disturbances, the fundamental p
can propagate over a long distance. The benefits of u
Raman gain depend of course on the amount of power
quired to excite the Raman process compared with the
ings in power gained by operating close to the ZDW.
these loss-related issues require further study, they will
be pursued here.

In an actual waveguide, some fluctuation in the grou
dispersion coefficients is expected and hence it is usefu
determine how stable the pulses are to variations of this s
Based on the frequency perturbations considered earlier~see
Sec. IV B!, we can obtain a rough idea of what might b
expected in practice. The frequency downshiftV85
20.064, for instance, results in an effective second-or
dispersion ofb̄52.275 according to Eq.~6!, and, at a carrier
t.

t.

ec
n

to
-

at
It
s

l
at,
lse
ng
e-
v-

ot

-
to
rt.

r

wavelength 0.3 nm away from the ZDW, this value ofb̄
corresponds to 11% decrease inuk9u which would normally
occur over a wavelength range of 0.05 nm in pure silica.
mentioned before, the pulse will radiate a part of its ene
for a decrease inuk9u but will completely collapse for any
increase inuk9u. Therefore, from a systems standpoint, lo
and variations in the group-dispersion coefficients pres
the most formidable obstacles to transmission.

Finally, we note that contrary to the arguments in@13#, the
fact that bound states are eigensolutions does not necess
suggest that they are inherently unstable. While it is true t
solitary-wave solutions of Eq.~8! do not form continuous
families in the parameterl, when we consider Eqs.~4!–~7!,
it is clear that a bound state corresponding to an eigenv
may physically assume a continuous range of energies
pending on the carrier frequency. The results presente
this study suggest that the carrier frequency may shift
wards or away from the ZDW depending on whether pert
bations induce, respectively, a loss or gain in pulse ene
This adjustment, however, appears to occur only wh
changes are not too drastic. The relatively stable behavio
the fundamental two-hump bound state demonstrated in
study certainly warrants further experimental and theoret
investigations of pulse propagation near the ZDW.
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